7 Tips To Achieve A 99% Cloud Deployment Success Rate


Extract. Transform. Read.

A newsletter from Pipeline: Your Data Engineering Resource

Hi past, present or future data professional!

Few aspects of data engineering are as shame-inducing as saying, after a failed deployment, “But it ran in my environment!”

In my first year as a data engineer I was that guy who made excuses like this and grew frustrated that I would complete a build and then struggle to push it over the finish line.

Here’s what helped me:

  • Learning the subtle but important difference between a dependency-related error and a code-oriented issue
  • Taking time to actually read documentation rather than skimming it
  • Understanding my chosen cloud platform (Google Cloud Platform)
  • Distinguishing the important bits of an error string to properly Google a mistake (both in local and cloud dev contexts)
  • Not running to my seniors for answers; StackOverflow, Medium, Reddit and platform-specific communities (like Google Community) are hive minds for solving specific errors
  • Logging status codes and outputs; you can’t fix what you can’t see
  • Creating “clean” dev environments that contain only the dependencies I need

I don’t track my deployment success rate (probably for the best given my initial failures), but I estimate that following the above advice has reduced my failure rate from 20% to between 1-5%.

None of these bullets, however, is a substitute for hands-on experience.

To step through your own deployment, enroll in my free 5-day Deploy Your First Cloud Function course.

Enroll here: https://pipe_line.ck.page/33a3ad0f36

As always, please send me any questions: zach@pipelinetode.com.

Thanks for ingesting,

-Zach

Extract. Transform. Read.

Reaching 20k+ readers on Medium and over 3k learners by email, I draw on my 4 years of experience as a Senior Data Engineer to demystify data science, cloud and programming concepts while sharing job hunt strategies so you can land and excel in data-driven roles. Subscribe for 500 words of actionable advice every Thursday.

Read more from Extract. Transform. Read.

Hi fellow data professional! Quick question: How much could I pay you to switch your job? Conventional wisdom in the tech industry in the last handful of years is that the way to supercharge growth and max out your career earnings is to frequently change jobs. On average, job switchers could and should target an increase of 15-20% of their current salary. But in a rocky economy (at least here in the U.S.), career experts are urging would-be switchers to consider the benefits of a stable role...

Hi fellow data professional and Happy New Year! In the second half of 2025, I made a radical choice: I (largely) stopped blogging. Over the past year, Medium (where I host my content) made a series of changes that de-prioritizes technical content, leading to the departure of several major publications, including Toward Data Science. Pair that platform disillusionment with a bit of burnout, and the result is a feeling that it’s time for a change. For 75+ weeks, I’ve preferred concise,...

Hi fellow data professional - Merry Christmas and Happy Holidays! Since an email is probably one of the least exciting things to open on Christmas morning, I'll keep this brief. As a thank you for subscribing and reading the newsletter this year, I'd like to offer a gift: My FREE guide to web scraping in Python. Centered around 3 "real world" projects, the guide highlights the importance of being able to retrieve, interpret and ingest unstructured data. Get your guide here. Have a restful...