7 Tips To Achieve A 99% Cloud Deployment Success Rate


Extract. Transform. Read.

A newsletter from Pipeline: Your Data Engineering Resource

Hi past, present or future data professional!

Few aspects of data engineering are as shame-inducing as saying, after a failed deployment, “But it ran in my environment!”

In my first year as a data engineer I was that guy who made excuses like this and grew frustrated that I would complete a build and then struggle to push it over the finish line.

Here’s what helped me:

  • Learning the subtle but important difference between a dependency-related error and a code-oriented issue
  • Taking time to actually read documentation rather than skimming it
  • Understanding my chosen cloud platform (Google Cloud Platform)
  • Distinguishing the important bits of an error string to properly Google a mistake (both in local and cloud dev contexts)
  • Not running to my seniors for answers; StackOverflow, Medium, Reddit and platform-specific communities (like Google Community) are hive minds for solving specific errors
  • Logging status codes and outputs; you can’t fix what you can’t see
  • Creating “clean” dev environments that contain only the dependencies I need

I don’t track my deployment success rate (probably for the best given my initial failures), but I estimate that following the above advice has reduced my failure rate from 20% to between 1-5%.

None of these bullets, however, is a substitute for hands-on experience.

To step through your own deployment, enroll in my free 5-day Deploy Your First Cloud Function course.

Enroll here: https://pipe_line.ck.page/33a3ad0f36

As always, please send me any questions: zach@pipelinetode.com.

Thanks for ingesting,

-Zach

Extract. Transform. Read.

Reaching 20k+ readers on Medium and over 3k learners by email, I draw on my 4 years of experience as a Senior Data Engineer to demystify data science, cloud and programming concepts while sharing job hunt strategies so you can land and excel in data-driven roles. Subscribe for 500 words of actionable advice every Thursday.

Read more from Extract. Transform. Read.

Hi fellow data professional! Big news from my home base of Orlando: Disney hired a new CEO with a pay package of nearly $40 million. If you read beyond the headline you’ll see that his base salary is “only” 2.5 million with the possibility of up to a 250% target incentive and some $26-ish million in stock options. This is why you, the job seeker, need to think beyond base salary and look at TC. Total compensation. Thanks to labor transparency laws passed in hiring hubs like New York and...

Hi fellow data professional! Once, during a virtual interview, I had to nod politely as my interviewer apologized for coughing after their cigarette. Oh, and to make this situation even more cringe—they were driving. Some industries design stressful interview processes to psychologically test a candidate’s poise under pressure. Luckily (for the most part) the software engineering field is not included in this basket of high-stress tests. Sure, we are subjected to moderate stress in the form...

Hi fellow data professional! On a recent holiday, a family member and I were strolling along a beach, talking about AI disruption (relaxing, I know). He, an attorney, assured me his job was AI-proof and jokingly offered to hire me when AI takes my data engineering job. If you ask executives at most companies, they’d find several flaws in that argument. Over 80% of technical executives, including Chief Data Officers and Chief AI Officers, consider data engineering to be an essential role...