7 Tips To Achieve A 99% Cloud Deployment Success Rate


Extract. Transform. Read.

A newsletter from Pipeline: Your Data Engineering Resource

Hi past, present or future data professional!

Few aspects of data engineering are as shame-inducing as saying, after a failed deployment, “But it ran in my environment!”

In my first year as a data engineer I was that guy who made excuses like this and grew frustrated that I would complete a build and then struggle to push it over the finish line.

Here’s what helped me:

  • Learning the subtle but important difference between a dependency-related error and a code-oriented issue
  • Taking time to actually read documentation rather than skimming it
  • Understanding my chosen cloud platform (Google Cloud Platform)
  • Distinguishing the important bits of an error string to properly Google a mistake (both in local and cloud dev contexts)
  • Not running to my seniors for answers; StackOverflow, Medium, Reddit and platform-specific communities (like Google Community) are hive minds for solving specific errors
  • Logging status codes and outputs; you can’t fix what you can’t see
  • Creating “clean” dev environments that contain only the dependencies I need

I don’t track my deployment success rate (probably for the best given my initial failures), but I estimate that following the above advice has reduced my failure rate from 20% to between 1-5%.

None of these bullets, however, is a substitute for hands-on experience.

To step through your own deployment, enroll in my free 5-day Deploy Your First Cloud Function course.

Enroll here: https://pipe_line.ck.page/33a3ad0f36

As always, please send me any questions: zach@pipelinetode.com.

Thanks for ingesting,

-Zach

Extract. Transform. Read.

Reaching 20k+ readers on Medium and nearly 3k learners by email, I draw on my 4 years of experience as a Senior Data Engineer to demystify data science, cloud and programming concepts while sharing job hunt strategies so you can land and excel in data-driven roles. Subscribe for 500 words of actionable advice every Thursday.

Read more from Extract. Transform. Read.

Hi past, present or future data professional! As the winter holidays approach, we’re entering a period of downtime for most orgs. Assuming your employer has hit goals (or accepted losses), allocated coverage for the slew of inevitable vacation requests and maybe even entered a “code freeze”, you’re entering data & tech’s slow season. If you’re working, during this time you may be asked to do any number of “downtime” (actual free time, not data outages) tasks ranging from code refactors to...

Hi past, present or future data professional! If you’re in the U.S., Happy Thanksgiving! I’m prepping for my food coma, so I’ll make this week’s newsletter quick. Like millions of Americans, I’ll be watching NFL football (go Ravens!). The average NFL game is 3 hours. If you can skip just one of today’s games and carve out that time for professional development, here’s how I’d spend it. In the spirit of football, I’ll split the time designation into 4 quarters. Documentation pass - if you read...

Extract. Transform. Read. A newsletter from PipelineToDE Hi past, present or future data professional! In 2 weeks or so The Oxford English Dictionary will reveal its 2025 word of the year, a semi-democratic process that lends academic legitimacy to words like “rizz” (2023’s pick). If you’re currently employed or interact with white collar workers, you would think the word of the year is “headwinds.” Used in a sentence: “We’ve pivoted our AI strategy but still encountered headwinds that...