7 Tips To Achieve A 99% Cloud Deployment Success Rate


Extract. Transform. Read.

A newsletter from Pipeline: Your Data Engineering Resource

Hi past, present or future data professional!

Few aspects of data engineering are as shame-inducing as saying, after a failed deployment, “But it ran in my environment!”

In my first year as a data engineer I was that guy who made excuses like this and grew frustrated that I would complete a build and then struggle to push it over the finish line.

Here’s what helped me:

  • Learning the subtle but important difference between a dependency-related error and a code-oriented issue
  • Taking time to actually read documentation rather than skimming it
  • Understanding my chosen cloud platform (Google Cloud Platform)
  • Distinguishing the important bits of an error string to properly Google a mistake (both in local and cloud dev contexts)
  • Not running to my seniors for answers; StackOverflow, Medium, Reddit and platform-specific communities (like Google Community) are hive minds for solving specific errors
  • Logging status codes and outputs; you can’t fix what you can’t see
  • Creating “clean” dev environments that contain only the dependencies I need

I don’t track my deployment success rate (probably for the best given my initial failures), but I estimate that following the above advice has reduced my failure rate from 20% to between 1-5%.

None of these bullets, however, is a substitute for hands-on experience.

To step through your own deployment, enroll in my free 5-day Deploy Your First Cloud Function course.

Enroll here: https://pipe_line.ck.page/33a3ad0f36

As always, please send me any questions: zach@pipelinetode.com.

Thanks for ingesting,

-Zach

Extract. Transform. Read.

Reaching 20k+ readers on Medium and nearly 3k learners by email, I draw on my 4 years of experience as a Senior Data Engineer to demystify data science, cloud and programming concepts while sharing job hunt strategies so you can land and excel in data-driven roles. Subscribe for 500 words of actionable advice every Thursday.

Read more from Extract. Transform. Read.

Extract. Transform. Read. A newsletter from PipelineToDE Hi past, present or future data professional! I want to share the single most important realization I had back in the summer of 2021. I was burned out, juggling two part-time jobs, trying to plan a wedding, and drowning in full-time job applications. I felt overwhelmed and underprepared as I plunged into a sea of candidates I perceived to be more intelligent and better "fits" than me. My portfolio was full of the usual Titanic, Iris,...

Extract. Transform. Read. A newsletter from PipelineToDE Hi past, present or future data professional! One of the most validating and terrifying professional moments is reaching the final interview round. It is in this context that you meet candidacy’s final boss, who incidentally, usually ends up being your boss' boss. Specifically I’m referring to the department executive responsible for bringing in additional headcount, i.e. you. While this may sound intimidating, the role of the executive...

Extract. Transform. Read. A newsletter from PipelineToDE Hi past, present or future data professional! If you’re a job seeker in the data space, your GitHub portfolio has only one job: To act as a calling card that gets you to the next step of the hiring process. Too often, I review portfolios for potential referrals and see brilliant code buried under structural mistakes that have nothing to do with programming skill. Your GitHub is not just cloud storage for your code; it’s a public display...