[ETR #13] A 3-Step Python Script To Write Less Cover Letters


Extract. Transform. Read.

A newsletter from Pipeline: Your Data Engineering Resource

Hi past, present or future data professional!

Somewhere along your professional development journey someone lied to you. They told you to crank out resumes because no one reads cover letters.

This couldn’t be further from the truth as 87% of hiring managers read cover letters. Such a high read rate represents a compelling opportunity to sell your data skills and showcase a bit of personality.

The problem?

Those pesky 3 paragraphs take way too long to write—as long as 30 minutes per job. Assuming you’re applying to 3-5 jobs per day, you’re looking at 2.5 hours of cover writing time.

Earlier this year, while helping a friend apply for data science positions, I created a simple Python script to auto-generate cover letters based on input. In addition to generating a cover letter based on my more than 500 hours as a career advisor, it will convert your output to a PDF, the preferred format for cover letters and resumes.

Even if this helps you generate cover letters faster, you might want to think twice about “spamming” your resume/cover letter. Only use a bulk application method if:

  • You’re beginning a job search 100% from scratch
  • You’re applying to several roles through a referral
  • You consider your target organization/role a “reach”
  • You truly subscribe to the idea that finding a job is a volume game

Since I’m not trying to ask you to spend 30 minutes on this email, here are this week’s links:

Finally, this week is significant to me because 9/13 marks 3 years in data engineering. Read my story and advice for following a similar path.

Why I Nearly Turned Down A 30k Raise And A Data Engineering Job

Questions? You know where to find me: zach@pipelinetode.com.

Until next time - thanks for ingesting,

-Zach Quinn

Extract. Transform. Read.

Reaching 20k+ readers on Medium and over 3k learners by email, I draw on my 4 years of experience as a Senior Data Engineer to demystify data science, cloud and programming concepts while sharing job hunt strategies so you can land and excel in data-driven roles. Subscribe for 500 words of actionable advice every Thursday.

Read more from Extract. Transform. Read.

Hi fellow data professional! Once thought to be a purely back office role, data engineering is undergoing a radical transformation and gaining a new responsibility: Front-end deployment. The folks already deploying applications in this capacity are known, incidentally, as forward deployed software engineers or forward deployed engineers (FDEs). Before you worry about needing to learn JavaScript or other web programming paradigms, know that I’m referring to the preparation, deployment and...

Hi past, present or future data professional! As time in 2025 dwindles, I wanted to share what I learned about optimizing design, development and troubleshooting time while working 3 days per week this fall. Quick background: If you’ve been a long-time reader, you’ll know that in March my wife and I had our first child. Consequently, through my employer, I was eligible for several months of parental leave. Anticipating my wife’s return to work (after much needed time off!) I allocated the...

Hi past, present or future data professional! As the winter holidays approach, we’re entering a period of downtime for most orgs. Assuming your employer has hit goals (or accepted losses), allocated coverage for the slew of inevitable vacation requests and maybe even entered a “code freeze”, you’re entering data & tech’s slow season. If you’re working, during this time you may be asked to do any number of “downtime” (actual free time, not data outages) tasks ranging from code refactors to...