Extract. Transform. Read.A newsletter from PipelineTechnically, this title is misleading. Not because your Google Cloud Function won’t fail. It may. And we’ll get to that. I promise. But because Google Cloud Functions are now called Google Cloud Run functions, selecting a name that reflects a fusion between Cloud Run and Cloud Functions, which were previously two distinct Google Cloud Platform products. While both products leverage serverless architecture to run code, Cloud Run was geared more toward those developing apps while Cloud Functions was more of a “quick and dirty” way to get simpler scripts, like ETL pipelines, into production. No matter what GCP calls this product, you’ll still be able to run scripts using a serverless configuration. As a bonus, you’ll now be able to use NVIDIA-based CPUs to boost runtime compute power. To leverage this though, you’ll need to upgrade to a gen 2 cloud function. With many new releases comes obsolescence. This case is no different. Effective October 14th, Google Cloud Functions (excuse me, Google Cloud Run functions), will no longer support Python 3.8, as Python itself is ending support for 3.8 in the same time frame.
If you need to go into more depth with updating runtimes or other aspects of deployment, you can learn to deploy a cloud function in 5 days. It’s 100% free and comes with access to a dedicated GitHub repository. Enroll here. I want to make sure I keep you sufficiently updated, so here are this week’s links:
Until next time—thanks for ingesting, -Zach Quinn |
Reaching 20k+ readers on Medium and over 3k learners by email, I draw on my 4 years of experience as a Senior Data Engineer to demystify data science, cloud and programming concepts while sharing job hunt strategies so you can land and excel in data-driven roles. Subscribe for 500 words of actionable advice every Thursday.
Hi fellow data professional and Happy New Year! In the second half of 2025, I made a radical choice: I (largely) stopped blogging. Over the past year, Medium (where I host my content) made a series of changes that de-prioritizes technical content, leading to the departure of several major publications, including Toward Data Science. Pair that platform disillusionment with a bit of burnout, and the result is a feeling that it’s time for a change. For 75+ weeks, I’ve preferred concise,...
Hi fellow data professional - Merry Christmas and Happy Holidays! Since an email is probably one of the least exciting things to open on Christmas morning, I'll keep this brief. As a thank you for subscribing and reading the newsletter this year, I'd like to offer a gift: My FREE guide to web scraping in Python. Centered around 3 "real world" projects, the guide highlights the importance of being able to retrieve, interpret and ingest unstructured data. Get your guide here. Have a restful...
Hi fellow data professional! Once thought to be a purely back office role, data engineering is undergoing a radical transformation and gaining a new responsibility: Front-end deployment. The folks already deploying applications in this capacity are known, incidentally, as forward deployed software engineers or forward deployed engineers (FDEs). Before you worry about needing to learn JavaScript or other web programming paradigms, know that I’m referring to the preparation, deployment and...