| Extract. Transform. Read.A newsletter from Pipeline Hi past, present or future data professional! When I worked at Disney, the absolute worst thing you could say to a guest was “No.” It’s not so much that Disney guests would hear “yes” throughout their vacation; they just wouldn’t hear no. And that’s why, as a developer and individual contributor, it’s important to master what The Art of Being Indispensable At Work author Bruce Tulgan calls the “good no.” A bad no is a no said to something that could be feasibly accomplished. A good no is a no uttered in an effort to establish or reiterate priorities, like telling a stakeholder “No that dimension can’t be added to the pipeline during this sprint because it will require a new request to a separate API endpoint.” Good nos can also put requests into the context of larger team and organizational goals; for instance, saying “no” to production-izing an ML model that only generates 15 rows of data that isn’t relevant to larger initiatives is, without a doubt, a good no. It’s not just the sentiment of a denied request that can irritate a stakeholder or colleague. The word “no” just doesn’t sound good. It’s sharp. Definitive. If I can’t say “yes” to someone, I focus on fulfilling two needs that are almost as good: 
 Providing context: “I can’t put your query into production because I’m currently working on x initiative which impacts our team’s OKR for this quarter.” Offering an alternative: “Unfortunately, I don’t have the bandwidth to take on a backfill of your requested scope. Instead, I can backfill the data to the prior quarter so you can at least see data within the last 90 days, which is what your dashboard seems to focus on.” Even if you’re not working in a data role currently, this lesson can be applied to the bane of most students’ existence: Group projects. Putting your efforts into context can help avoid scope creep and make sure you don’t end up with a disproportionate amount of work. And so you don’t end up with too much work, here are this week’s links as plain text. 
 Questions? zach@pipelinetode.com Thanks for ingesting, -Zach Quinn | 
Reaching 20k+ readers on Medium and nearly 3k learners by email, I draw on my 4 years of experience as a Senior Data Engineer to demystify data science, cloud and programming concepts while sharing job hunt strategies so you can land and excel in data-driven roles. Subscribe for 500 words of actionable advice every Thursday.
Extract. Transform. Read. A newsletter from PipelineToDE Hi past, present or future data professional! One of the most validating and terrifying professional moments is reaching the final interview round. It is in this context that you meet candidacy’s final boss, who incidentally, usually ends up being your boss' boss. Specifically I’m referring to the department executive responsible for bringing in additional headcount, i.e. you. While this may sound intimidating, the role of the executive...
Extract. Transform. Read. A newsletter from PipelineToDE Hi past, present or future data professional! If you’re a job seeker in the data space, your GitHub portfolio has only one job: To act as a calling card that gets you to the next step of the hiring process. Too often, I review portfolios for potential referrals and see brilliant code buried under structural mistakes that have nothing to do with programming skill. Your GitHub is not just cloud storage for your code; it’s a public display...
Extract. Transform. Read. A newsletter from PipelineToDE Hi past, present or future data professional! Despite crushing autocorrect scenarios, most AI code assistants like CoPilot miss a critical step when helping developers of any experience level: Validation. Arguably, leveraging an AI Agent to validate a code’s quality is on the user. But a surprising amount of experienced programmers are taking the worrying approach of believing an AI’s first “thought” when it comes to code that will...