[ETR #18] What Makes Data Engineers Say "No"


Extract. Transform. Read.

A newsletter from Pipeline

Hi past, present or future data professional!

When I worked at Disney, the absolute worst thing you could say to a guest was “No.” It’s not so much that Disney guests would hear “yes” throughout their vacation; they just wouldn’t hear no. And that’s why, as a developer and individual contributor, it’s important to master what The Art of Being Indispensable At Work author Bruce Tulgan calls the “good no.”

A bad no is a no said to something that could be feasibly accomplished. A good no is a no uttered in an effort to establish or reiterate priorities, like telling a stakeholder “No that dimension can’t be added to the pipeline during this sprint because it will require a new request to a separate API endpoint.”

Good nos can also put requests into the context of larger team and organizational goals; for instance, saying “no” to production-izing an ML model that only generates 15 rows of data that isn’t relevant to larger initiatives is, without a doubt, a good no.

It’s not just the sentiment of a denied request that can irritate a stakeholder or colleague. The word “no” just doesn’t sound good. It’s sharp. Definitive.

If I can’t say “yes” to someone, I focus on fulfilling two needs that are almost as good:

  • Providing context
  • Offering an alternative

Providing context: “I can’t put your query into production because I’m currently working on x initiative which impacts our team’s OKR for this quarter.”

Offering an alternative: “Unfortunately, I don’t have the bandwidth to take on a backfill of your requested scope. Instead, I can backfill the data to the prior quarter so you can at least see data within the last 90 days, which is what your dashboard seems to focus on.”

Even if you’re not working in a data role currently, this lesson can be applied to the bane of most students’ existence: Group projects. Putting your efforts into context can help avoid scope creep and make sure you don’t end up with a disproportionate amount of work.

And so you don’t end up with too much work, here are this week’s links as plain text.

Questions? zach@pipelinetode.com

Thanks for ingesting,

-Zach Quinn

Pipeline To DE

Top data engineering writer on Medium & Senior Data Engineer in media; I use my skills as a former journalist to demystify data science/programming concepts so beginners to professionals can target, land and excel in data-driven roles.

Read more from Pipeline To DE

Extract. Transform. Read. A Newsletter From Pipeline Hi past, present or future data professional! Since today marks Thanksgiving in the US, I hope this reaches you before your eyes glaze over from the tryptophan-induced turkey coma we all inevitably slip into. While today is a day of gratitude, from a data engineering perspective, I’d like to focus, instead, on the under-the-radar tasks that can make a difference at this time of year—even if they don’t gain you any recognition at work. The...

Extract. Transform. Read. A newsletter from Pipeline Hi past, present or future data professional! It’s never good when you wake up to this from a coworker: 💀 The skull wasn’t because the sender felt like they would suffer any kind of dramatic fate. Instead, they were prepared to administer near-fatal justice to the junior engineer who made several unnecessary overnight commits straight to our org’s main branch. The thing is, for a first-time violation, I can understand why testing is an...

Extract. Transform. Read. A newsletter from Pipeline Hi past, present or future data professional! It’s been a busy fall; I currently have 14 tasks in various states of development. Right now my JIRA board looks like I just won bingo—twice. Unfortunately when you climb the tech ladder things only get busier which means you’re going to burn out unless you take steps toward proactivity. For me this means learning which tasks I don’t need to (and really shouldn’t) do manually. And before you...