[ETR #19] 1 Question New Data Engineers Can't Ask


Extract. Transform. Read.

A newsletter from Pipeline

Hi past, present or future data professional!

I recently participated in a technical design meeting that was derailed by a single, fundamental question.

“Why?”

Despite the fact that I worked with the particular data source we were discussing for nearly two years, I fell into the common trap of going “on autopilot” and failing to question the initial need for the data. At this point, you would think asking “why” of years’ worth of work would be offensive.

Instead of myself or other team members getting defensive, it led to a productive conversation about not just refining our approach to ingestion, but also inspired talk of how we can manage stakeholder expectations and softly encourage them to “do more with less.”

Fortunately, you don’t need to derail a meeting to leverage what I call a productive why. Asking occasional, tactful “whys” can position you as a critical thinker and thought leader (or at least an enthusiastic thought contributor) within your org. When appropriate, consider asking…

  • Why are we using x tool over y when x clearly offers a more streamlined integration with our data warehouse?
  • Why are we dedicating development resources to solving this issue when there isn’t a clear business outcome?
  • Why are stakeholders asking for a new data pipeline when this existing table provides nearly all of the dimensions they’re seeking?
  • Why are we paying for x service when we could feasibly build our own solution?

I realize you may not be in a professional role; nonetheless, I’ve found a lot of value can result from occasionally asking “why” even when you’re simply writing code.

For instance, I was a habitual user of Pandas’ .append() method. Unfortunately, to my disappointment, Pandas 2.0 deprecated .append() in the past year. I easily could have panicked and said “Iterating and appending key values to an empty data frame is how I’ve always converted JSON to a data frame. What am I going to do?” But being forced to adapt to the change made me think about what prompted that habit initially.

To learn what that motivation was plus how a simple "why" nearly left me tongue-tied in an interview, read the latest on Pipeline.

And so you don’t have to question where those hyperlinks go, here they are as plain text.

Questions? zach@pipelinetode.com

Thanks for ingesting,

-Zach Quinn

Extract. Transform. Read.

Reaching 20k+ readers on Medium and over 3k learners by email, I draw on my 4 years of experience as a Senior Data Engineer to demystify data science, cloud and programming concepts while sharing job hunt strategies so you can land and excel in data-driven roles. Subscribe for 500 words of actionable advice every Thursday.

Read more from Extract. Transform. Read.

Hi fellow data professional! Quick question: How much could I pay you to switch your job? Conventional wisdom in the tech industry in the last handful of years is that the way to supercharge growth and max out your career earnings is to frequently change jobs. On average, job switchers could and should target an increase of 15-20% of their current salary. But in a rocky economy (at least here in the U.S.), career experts are urging would-be switchers to consider the benefits of a stable role...

Hi fellow data professional and Happy New Year! In the second half of 2025, I made a radical choice: I (largely) stopped blogging. Over the past year, Medium (where I host my content) made a series of changes that de-prioritizes technical content, leading to the departure of several major publications, including Toward Data Science. Pair that platform disillusionment with a bit of burnout, and the result is a feeling that it’s time for a change. For 75+ weeks, I’ve preferred concise,...

Hi fellow data professional - Merry Christmas and Happy Holidays! Since an email is probably one of the least exciting things to open on Christmas morning, I'll keep this brief. As a thank you for subscribing and reading the newsletter this year, I'd like to offer a gift: My FREE guide to web scraping in Python. Centered around 3 "real world" projects, the guide highlights the importance of being able to retrieve, interpret and ingest unstructured data. Get your guide here. Have a restful...