Extract. Transform. Read.A newsletter from Pipeline Hi past, present or future data professional! Despite falling into the realm of engineering, data infrastructure construction is a bit like basic art. At times building a data pipeline is as simple as filling in one of those color-by-numbers books. Other times, the process of extracting and ingesting data can be as abstract and disconnected as paint flicked onto a canvas, Jackson Pollack style. No matter the complexity of your build, there are always certain brushes, a.k.a. non-negotiables, you should paint with to create intuitive and robust pipelines. I consider the following recommendations to be non-negotiable because they serve the most basic goal of a data pipeline: Providing reliable, prompt and accurate data to data consumers. A non-negotiable you must include in not only data pipelines, but programmatic scripts at large, is a clear, consistent and accessible form of logging. Good logs will concisely reflect what is going on within a script, revealing insights about each function or step as it is executed. Learn more about the importance of logging and best practices here. Going hand-in-hand with logging is the capturing of and reference to API status codes. While not all APIs will emit similar text messages when a response is triggered, there are universal codes like 200 that can be helpful in indicating the presence of data or other attributes and distinguish an unsuccessful request from a successful effort. Once you have the data, I’d suggest, as a non-negotiable, that you keep it in a consistent format. It might be nice being able to iterate through columns in a data frame, convert it to JSON, and then convert to a final data frame, but the resources required to execute the transformations and redundancy of the operations makes this inefficient. If you have to do significant work to unnest data, for instance, it may be better and more efficient to keep your data in JSON form. Finally, one of the worst things a pipeline can do (after breaking) is generate duplicate data. Nearly every one of my work builds includes what I call a “refresh” query that deletes the current date’s data as the pipe runs. This means that if the pipeline has to run again, it will generate the exact same output. The word for maintaining state like this is “idempotent.” In an org running hundreds of pipelines, you don’t want to create the 1 pipe with an uncontrollable output. To review, non-negotiables include:
This week's links:
What did I miss? Reply to this email and let me know. Thanks for ingesting, -Zach Quinn |
Reaching 20k+ readers on Medium and nearly 3k learners by email, I draw on my 4 years of experience as a Senior Data Engineer to demystify data science, cloud and programming concepts while sharing job hunt strategies so you can land and excel in data-driven roles. Subscribe for 500 words of actionable advice every Thursday.
Extract. Transform. Read. A newsletter from PipelineToDE Hi past, present or future data professional! I want to share the single most important realization I had back in the summer of 2021. I was burned out, juggling two part-time jobs, trying to plan a wedding, and drowning in full-time job applications. I felt overwhelmed and underprepared as I plunged into a sea of candidates I perceived to be more intelligent and better "fits" than me. My portfolio was full of the usual Titanic, Iris,...
Extract. Transform. Read. A newsletter from PipelineToDE Hi past, present or future data professional! One of the most validating and terrifying professional moments is reaching the final interview round. It is in this context that you meet candidacy’s final boss, who incidentally, usually ends up being your boss' boss. Specifically I’m referring to the department executive responsible for bringing in additional headcount, i.e. you. While this may sound intimidating, the role of the executive...
Extract. Transform. Read. A newsletter from PipelineToDE Hi past, present or future data professional! If you’re a job seeker in the data space, your GitHub portfolio has only one job: To act as a calling card that gets you to the next step of the hiring process. Too often, I review portfolios for potential referrals and see brilliant code buried under structural mistakes that have nothing to do with programming skill. Your GitHub is not just cloud storage for your code; it’s a public display...