Extract. Transform. Read.A newsletter from Pipeline. Hi past, present or future data professional! This holiday season will be a little less bright thanks to my lack of personal GitHub commits. Like you, I began 2024 full of ideas and motivation that, let’s be honest, was depleted by the end of Q1 when I was cranking out enough code at work that would please even notorious code volume stickler Elon Musk. Despite my lacking output, I managed to hunker down to create useful “bespoke” (a.k.a. self-created) data tools to save hours on tedious work. Even if you don’t take inspiration from the code or create similar code, my hope is that you’ll come away with 1 takeaway: Coding for function == coding for fun. As a beginner it might make sense to spend hours processing available datasets to refine coding techniques and get comfortable with data manipulation; however, as you gain experience you’ll realize that some hobby projects can hit the trifecta of programming satisfaction.
You might not think “fun” when you think of parsing Walmart receipts to reign in grocery spending, but that’s what I spent 1-2 hours coding up once I realized my Walmart Plus usage was getting a bit “spendy.” The added bonus is that the parser can be leveraged to either calculate groceries or, in a much more relevant application, help me determine what items were missing from my order (the double-edged sword of passive shopping); read more. Once I discovered and gained experience with PDF parser PyPDF, I began to see a variety of applications, including the parsing and ingestion of 6-8 page credit card statements. Since financial data is notoriously difficult to obtain, being able to cleanly and reliably process credit card statements provides transparency for my spending habits. In an earlier edition of this newsletter I mentioned iterative backfilling as one of my top recommendations for small-scale automation; I literally spent 4 hours at work running a script that functions nearly identically to what I outline here. As a bonus, I didn’t even have to be in the room. Although Python served me well for projects this year, I’ve developed an appreciation for Google Sheets’ data connections. Instead of having to update a static sheet of sources I reference in my published work and in these notes to you, I created a very niche search engine using only a Sheets connection and a bit of SQL. If you’re even an occasional BigQuery user, check it out. While I’ve enjoyed coding these backend builds, in 2025 I’d like to venture out of my comfort zone and create simple UIs for builds I access repeatedly or would like to share in a neater format. If you’d like to read the expanded, published version of this newsletter, you can do so here. Thanks for ingesting, -Zach Quinn |
Top data engineering writer on Medium & Senior Data Engineer in media; I use my skills as a former journalist to demystify data science/programming concepts so beginners to professionals can target, land and excel in data-driven roles.
Extract. Transform. Read. A newsletter from Pipeline Hi past, present or future data professional! From 2014-2017 I lived in Phoenix, Arizona and enjoyed the state’s best resident privilege: No daylight saving time. If you’re unaware (and if you're in the other 49 US states, you’re really unaware), March 9th was daylight saving, when we spring forward an hour. If you think this messes up your microwave and oven clocks, just wait until you check on your data pipelines. Even though data teams...
Extract. Transform. Read. A newsletter from Pipeline Hi past, present or future data professional! As difficult as data engineering can be, 95% of the time there is a structure to data that originates from external streams, APIs and vendor file deliveries. Useful context is provided via documentation and stakeholder requirements. And specific libraries and SDKs exist to help speed up the pipeline build process. But what about the other 5% of the time when requirements might be structured, but...
Extract. Transform. Read. A newsletter from Pipeline Hi past, present or future data professional! To clarify the focus of this edition of the newsletter, the reason you shouldn’t bother learning certain data engineering skills is due to one of two scenarios— You won’t need them You’ll learn them on the job You won’t need them Generally these are peripheral skills that you *technically* need but will hardly ever use. One of the most obvious skills, for most data engineering teams, is any...