Extract. Transform. Read.A newsletter from Pipeline Hi past, present or future data professional! If you’ve ever seen the legendary American sitcom Seinfeld, you might be familiar with the fictional holiday the characters create, festivus, “A festival for the rest of us.” As a rejection of conventional winter holidays like Christmas/Haunnukah, a core part of festivus is the “airing of grievances.” While I have yet to attempt this in real-life, I’ve spent the past two years airing my grievances with aspects of data engineering with the intention of exposing you, the aspiring or beginning-career engineer, to niche errors that require on-the-fly problem solving. Since, for many, it’s deep into the holiday season, I won’t take too much time listing all 12 errors; instead, here are three you’re most likely to encounter when first using technologies like Python, Airflow & SQL. Erroneous datetime conversion
Creating Excessive Docker Images (And Killing Memory)
SQL: Using CREATE OR REPLACE TABLE() instead of INSERT()
While understanding the possible errors you could encounter as a data engineer working with multiple technologies is helpful, I believe it’s just as important to cultivate a healthy mental approach to programming. Programming is one of the coolest, most frustrating ways you can spend your time. The sooner you realize the absurdity of what we do, the sooner you’ll free yourself to make and learn from mistakes like the ones above and those I highlight in the full story. Here’s to overcoming more bugs, blockers and annoyances in ‘25. Happy holidays and thanks for ingesting, -Zach Quinn |
Top data engineering writer on Medium & Senior Data Engineer in media; I use my skills as a former journalist to demystify data science/programming concepts so beginners to professionals can target, land and excel in data-driven roles.
Extract. Transform. Read. A newsletter from Pipeline Hi past, present or future data professional! If you haven’t heard "Happy New Year" enough in the past week… let me be, hopefully, the last to say it as we embrace all 2025 has to offer. Beginning a new year comes with the inevitable conception (and ultimately ignorance) of a new year’s resolution. Instead of focusing on one abstract goal to improve, I’d like to suggest, instead, that you form lasting habits, especially when it comes to...
Extract. Transform. Read. A newsletter from Pipeline Hi past, present or future data professional! In 2024 I published roughly 75 stories, mostly about data engineering or technology; understandably, with the pace of life and media, you most likely missed something I hope you’ll find valuable and actionable. Keeping with one of my core beliefs, that data-driven tools should result in both professional enrichment and reduce personal problems, my methodology for picking stories out of that...
Extract. Transform. Read. A newsletter from Pipeline Hi past, present or future data professional! It’s the most wonderful time of the year… performance reviews. Depending on your outlook on your job/org, that “wonderful” could be sarcastic. However, if you’ve landed on your manager’s nice list, this can be the time to recap your achievements to maintain credibility and work toward the next rung on the corporate ladder. If you’re on a small team serving demanding stakeholders it’s possible...