Extract. Transform. Read.A newsletter from Pipeline Hi past, present or future data professional! If you’ve ever seen the legendary American sitcom Seinfeld, you might be familiar with the fictional holiday the characters create, festivus, “A festival for the rest of us.” As a rejection of conventional winter holidays like Christmas/Haunnukah, a core part of festivus is the “airing of grievances.” While I have yet to attempt this in real-life, I’ve spent the past two years airing my grievances with aspects of data engineering with the intention of exposing you, the aspiring or beginning-career engineer, to niche errors that require on-the-fly problem solving. Since, for many, it’s deep into the holiday season, I won’t take too much time listing all 12 errors; instead, here are three you’re most likely to encounter when first using technologies like Python, Airflow & SQL. Erroneous datetime conversion
Creating Excessive Docker Images (And Killing Memory)
SQL: Using CREATE OR REPLACE TABLE() instead of INSERT()
While understanding the possible errors you could encounter as a data engineer working with multiple technologies is helpful, I believe it’s just as important to cultivate a healthy mental approach to programming. Programming is one of the coolest, most frustrating ways you can spend your time. The sooner you realize the absurdity of what we do, the sooner you’ll free yourself to make and learn from mistakes like the ones above and those I highlight in the full story. Here’s to overcoming more bugs, blockers and annoyances in ‘25. Happy holidays and thanks for ingesting, -Zach Quinn |
Reaching 20k+ readers on Medium and nearly 3k learners by email, I draw on my 4 years of experience as a Senior Data Engineer to demystify data science, cloud and programming concepts while sharing job hunt strategies so you can land and excel in data-driven roles. Subscribe for 500 words of actionable advice every Thursday.
Hi past, present or future data professional! As the winter holidays approach, we’re entering a period of downtime for most orgs. Assuming your employer has hit goals (or accepted losses), allocated coverage for the slew of inevitable vacation requests and maybe even entered a “code freeze”, you’re entering data & tech’s slow season. If you’re working, during this time you may be asked to do any number of “downtime” (actual free time, not data outages) tasks ranging from code refactors to...
Hi past, present or future data professional! If you’re in the U.S., Happy Thanksgiving! I’m prepping for my food coma, so I’ll make this week’s newsletter quick. Like millions of Americans, I’ll be watching NFL football (go Ravens!). The average NFL game is 3 hours. If you can skip just one of today’s games and carve out that time for professional development, here’s how I’d spend it. In the spirit of football, I’ll split the time designation into 4 quarters. Documentation pass - if you read...
Extract. Transform. Read. A newsletter from PipelineToDE Hi past, present or future data professional! In 2 weeks or so The Oxford English Dictionary will reveal its 2025 word of the year, a semi-democratic process that lends academic legitimacy to words like “rizz” (2023’s pick). If you’re currently employed or interact with white collar workers, you would think the word of the year is “headwinds.” Used in a sentence: “We’ve pivoted our AI strategy but still encountered headwinds that...