[ETR #38] Powerful But Messy Data


Extract. Transform. Read.

A newsletter from Pipeline

Hi past, present or future data professional!

As difficult as data engineering can be, 95% of the time there is a structure to data that originates from external streams, APIs and vendor file deliveries. Useful context is provided via documentation and stakeholder requirements. And specific libraries and SDKs exist to help speed up the pipeline build process.

But what about the other 5% of the time when requirements might be structured, but your data isn’t?

Unstructured data comes in many forms, including incomprehensible metadata from ioT devices; I have the most experience with textual data, so I can speak to how I recommend approaching this classification of data.

Since I nearly always work with structured data at work, I’ll be speaking from my experience scraping web data, parsing text files and reading PDFs.

  • Understand the min() max() and shape of your data; for textual data, this means knowing first and last pages (or tokens) and the length of your doc
  • As soon as possible, aggregate your raw data into a form you can work with; I’m partial to lists that I convert to data frame columns, but you could just as easily construct a dict()
  • Once you know what you’re looking for, leverage regex string searches to avoid processing EVERYTHING; there are many regex generators that can check your expressions as you write them
  • If you’re really lost, check the rendered output of your data; if this is a PDF, open your file in preview or a similar view

Finally, if you’re working with a particular type of data, understand what libraries are available to reduce the manual parsing that will be required.

And remember, the only shape you don’t want your data in is (0,0).

Thanks for ingesting,

-Zach Quinn

Extract. Transform. Read.

Reaching 20k+ readers on Medium and over 3k learners by email, I draw on my 4 years of experience as a Senior Data Engineer to demystify data science, cloud and programming concepts while sharing job hunt strategies so you can land and excel in data-driven roles. Subscribe for 500 words of actionable advice every Thursday.

Read more from Extract. Transform. Read.

Hi fellow data professional! Once thought to be a purely back office role, data engineering is undergoing a radical transformation and gaining a new responsibility: Front-end deployment. The folks already deploying applications in this capacity are known, incidentally, as forward deployed software engineers or forward deployed engineers (FDEs). Before you worry about needing to learn JavaScript or other web programming paradigms, know that I’m referring to the preparation, deployment and...

Hi past, present or future data professional! As time in 2025 dwindles, I wanted to share what I learned about optimizing design, development and troubleshooting time while working 3 days per week this fall. Quick background: If you’ve been a long-time reader, you’ll know that in March my wife and I had our first child. Consequently, through my employer, I was eligible for several months of parental leave. Anticipating my wife’s return to work (after much needed time off!) I allocated the...

Hi past, present or future data professional! As the winter holidays approach, we’re entering a period of downtime for most orgs. Assuming your employer has hit goals (or accepted losses), allocated coverage for the slew of inevitable vacation requests and maybe even entered a “code freeze”, you’re entering data & tech’s slow season. If you’re working, during this time you may be asked to do any number of “downtime” (actual free time, not data outages) tasks ranging from code refactors to...